Evaluation and Operators
We previously defined the meaning of a function application using a computation model based on substitution. Now we extend this model to classes and objects.

Question: How is an instantiation of the class \(\text{new } C(e_1, \ldots, e_m)\) evaluated?

Answer: The expression arguments \(e_1, \ldots, e_m\) are evaluated like the arguments of a normal function. That’s it.

The resulting expression, say, \(\text{new } C(v_1, \ldots, v_m)\), is already a value.
Now suppose that we have a class definition,

\[
\text{class } C(x_1, \ldots, x_m)\{ \text{ ... def } f(y_1, \ldots, y_n) = b \text{ ... } \}
\]

where

- The formal parameters of the class are \(x_1, \ldots, x_m \).
- The class defines a method \(f \) with formal parameters \(y_1, \ldots, y_n \).

(The list of function parameters can be absent. For simplicity, we have omitted the parameter types.)

Question: How is the following expression evaluated?

\[
\text{new } C(v_1, \ldots, v_m).f(w_1, \ldots, w_n)
\]
Classes and Substitutions (2)

Answer: The expression \(\text{new } C(v_1, \ldots, v_m).f(w_1, \ldots, w_n) \) is rewritten to:

\[
[w_1/y_1, \ldots, w_n/y_n][v_1/x_1, \ldots, v_m/x_m][\text{new } C(v_1, \ldots, v_m)/\text{this}] b
\]

There are three substitutions at work here:

- the substitution of the formal parameters \(y_1, \ldots, y_n \) of the function \(f \) by the arguments \(w_1, \ldots, w_n \),
- the substitution of the formal parameters \(x_1, \ldots, x_m \) of the class \(C \) by the class arguments \(v_1, \ldots, v_m \),
- the substitution of the self reference \(\text{this} \) by the value of the object \(\text{new } C(v_1, \ldots, v_n) \).

\[
\text{class } C \{ \text{x1, ..., xm} \} \text{ if }
\]

\[
\text{def } f \{ \text{y1, ..., yn} \} = b \ldots \text{this} \ldots
\]
Object Rewriting Examples

new Rational(1, 2).numer
Object Rewriting Examples

new Rational(1, 2).numer

→ [1/x, 2/y] [] [new Rational(1, 2)/this] x
Object Rewriting Examples

\[
\text{new Rational}(1, 2).\text{numer} \\
\Rightarrow [1/x, 2/y] \emptyset [\text{new Rational}(1, 2)/\text{this}] \times \\
= 1
\]
Object Rewriting Examples

new Rational(1, 2).numer
→ \([1/x, 2/y] \square [\text{new Rational}(1, 2)/\text{this}] \ x\)
= 1

new Rational(1, 2).less(new Rational(2, 3))
new Rational(1, 2).numer
→ [1/x, 2/y] [] [new Rational(1,2)/this] x
= 1

new Rational(1, 2).less(new Rational(2, 3))
→ [1/x, 2/y] [newRational(2,3)/that] [new Rational(1,2)/this]
 this.numer * that.denom < that.numer * this.denom
Object Rewriting Examples

new Rational(1, 2).numer

→ [1/x, 2/y] [] [new Rational(1,2)/this] x

= 1

new Rational(1, 2).less(new Rational(2, 3))

→ [1/x, 2/y] [newRational(2,3)/that] [new Rational(1,2)/this]
 this.numer * that.denom < that.numer * this.denom

= new Rational(1, 2).numer * new Rational(2, 3).denom <
 new Rational(2, 3).numer * new Rational(1, 2).denom
Object Rewriting Examples

new Rational(1, 2).numer

→ \[1/x, 2/y\] [] [new Rational(1, 2)/this] x

= 1

new Rational(1, 2).less(new Rational(2, 3))

→ \[1/x, 2/y\] [newRational(2, 3)/that] [new Rational(1, 2)/this]
 this.numer * that.denom < that.numer * this.denom

= new Rational(1, 2).numer * new Rational(2, 3).denom <
 new Rational(2, 3).numer * new Rational(1, 2).denom

→ 1 * 3 < 2 * 2

→ true
In principle, the rational numbers defined by `Rational` are as natural as integers.

But for the user of these abstractions, there is a noticeable difference:

- We write `x + y`, if `x` and `y` are integers, but
- We write `r.add(s)` if `r` and `s` are rational numbers.

In Scala, we can eliminate this difference. We proceed in two steps.
Step 1: Infix Notation

Any method with a parameter can be used like an infix operator.

It is therefore possible to write

\[\texttt{r add s} \quad \texttt{r.add(s)} \]
\[\texttt{r less s} \quad \texttt{/* in place of */} \quad \texttt{r.less(s)} \]
\[\texttt{r max s} \quad \texttt{r.max(s)} \]
Step 2: Relaxed Identifiers

Operators can be used as identifiers.

Thus, an identifier can be:

- **Alphanumeric**: starting with a letter, followed by a sequence of letters or numbers
- **Symbolic**: starting with an operator symbol, followed by other operator symbols.
- The underscore character ‘_’ counts as a letter.
- Alphanumeric identifiers can also end in an underscore, followed by some operator symbols.

Examples of identifiers:

\[
\text{x1} \quad \star \quad +?\%& \quad \text{vector}_ \text{++} \quad \text{counter}_= \]
Operators for Rationals

A more natural definition of class Rational:

```scala
class Rational(x: Int, y: Int) {
  private def gcd(a: Int, b: Int): Int = if (b == 0) a else gcd(b, a % b)
  private val g = gcd(x, y)
  def numer = x / g
  def denom = y / g
  def + (r: Rational) =
    new Rational(
      numer * r.denom + r.numer * denom,
      denom * r.denom)
  def - (r: Rational) = ...
  def * (r: Rational) = ...
  ...
}
```
... and rational numbers can be used like Int or Double:

```scala
val x = new Rational(1, 2)
val y = new Rational(1, 3)
(x * x) + (y * y)
```
Precedence Rules

The *precedence* of an operator is determined by its first character.

The following table lists the characters in increasing order of priority precedence:

(all letters)
| ^
&
< >
= !:
+ -
* / %
(all other special characters)
Exercise

Provide a fully parenthized version of

\[
\left((a + b)^? (c ?^ d) \right) \less (a \Rightarrow b) | c
\]

Every binary operation needs to be put into parentheses, but the structure of the expression should not change.