
Closure conversion
or: data representation

for functions
Advanced Compiler Construction

Michel Schinz – 2013-03-14

1

Higher-order
functions

2

Higher-order function

A higher-order function (HOF) is a function that either:

– takes another function as argument, or

– returns a function.
Many languages offer higher-order functions, but not all
provide the same power...

3

HOFs in C

In C, it is possible to pass a function as an argument, and to
return a function as a result.
However, C functions cannot be nested: they must all
appear at the top level. This severely restricts their
usefulness, but greatly simplifies their implementation – they
can be represented as simple code pointers.

4

HOFs in functional languages

In functional languages – Scala, OCaml, Haskell, etc. –
functions can be nested, and they can survive the scope that
defined them.
This is very powerful as it permits the definition of functions
that return “new” functions – e.g. functional composition.
However, as we will see, it also complicates the
representation of functions, as simple code pointers are no
longer sufficient.

5

HOF example

To illustrate the issues related to the representation of
functions in a functional language, we will use the following
L3 example:
(def make-adder
 (fun (x)
 (fun (y) (@+ x y))))
(def increment (make-adder 1))
(increment 41) ⇒ 42
(def decrement (make-adder -1))
(decrement 42) ⇒ 41

6

Representing adders

To represent the functions returned by make-adder, there
are basically two choices:

1. Use simple code pointers. Unfortunately, this implies
run-time code generation, as each function returned by
make-adder is different!

2. Find another representation for functions, which does
not depend on run-time code generation.

7

Closures

8

Closures

To adequately represent the functions returned by make-
adder, their code pointer must be augmented with the
value of x.
Such a combination of a code pointer and an environment
giving the values of the free variable(s) – here x – is called a
closure.
The name refers to the fact that the pair composed of the
code pointer and the environment is closed, i.e. self-
contained.

9

Closures
(make-adder 1) (make-adder -1)

code pointer

environment

code pointer

environment
compiled code for
(fun (y)
 (@+ x y))

x→1 x→-1

shared
code

The code of a closure must be evaluated in
its environment, so that x is “known”.

10

Introducing closures

Using closures instead of function pointers changes the way
functions are manipulated at run time:

– function abstraction builds and returns a closure
instead of a simple code pointer,

– function application extracts the code pointer from the
closure, and invokes it with the environment as an
additional argument.

11

Representing closures

During function application, nothing is known about the
closure being called – it can be any closure in the program.
The code pointer must therefore be at a known and
constant location so that it can be extracted.
The values contained in the environment, however, are not
used during application itself: they will only be accessed by
the function body. This provides some freedom to place
them.

12

Flat closures
In flat (or one-block) closures, the environment is “inlined”
into the closure itself, instead of being referred from it. The
closure plays the role of the environment.

(make-adder 1)

code pointer

x→1

flat closure

13

Exercise

Given the following L3 composition function:
(def compose
 (fun (f g)
 (fun (x) (f (g x)))))

draw the flat closure returned by the application
(compose succ twice)

assuming that succ and twice are two functions defined in
an enclosing scope.

14

Compiling closures

15

Closure conversion

In a compiler, closures can be implemented by a
simplification phase, called closure conversion.
Closure conversion transforms a program in which functions
can have free variables into an equivalent one containing
only closed functions.
The output of closure conversion is therefore a program in
which functions can be represented as code pointers.

16

Closure conversion

Closure conversion is nothing more than data
representation for functions: it encodes the high-level
notion of functions of the source language using the low-
level concepts of the target language – in this case heap-
allocated blocks and code pointers.

17

Free variables

The free variables of a function are the variables that are
used but not defined in that function – i.e. they are defined
in some enclosing scope.
The make-adder example contains two functions:
(def make-adder
 (fun (x)
 (fun (y) (@+ x y))))

The outer one does not have any free variable: it is a closed
function. The inner one has a single free variable: x.

18

Closing functions

Functions are closed by adding a parameter representing
the environment, and using it in the function’s body to
access free variables.
Function abstraction and application must of course be
adapted accordingly:

– abstraction must create and initialize the closure,

– application must pass the environment as an additional
parameter.

19

Closing example
Assuming the existence of abstract closure-make and
closure-get functions, a closure conversion phase could
transform the make-adder example as follows:

(def make-adder (fun (x)
 (fun (y) (@+ x y))))
(make-adder 1)

(def make-adder
 (closure-make
 (fun (env1 x)
 (closure-make
 (fun (env2 y)
 (@+ (closure-get env2 1) y))
 x))))
((closure-get make-adder 0) make-adder 1)

20

Recursive closures
Recursive functions need access to their own closure. For
example:
(letrec ((f (fun (l) … (map f l) …))))
 …)

Several techniques can be used to give a closure access to
itself:

– the closure – here f – can be treated as a free variable,
and put in its own environment – leading to a cyclic
closure,

– the closure can be rebuilt from scratch,

– with flat closures, the environment is the closure, and
can be reused directly.

21

Mutually-recursive closures
Mutually-recursive functions all need access to the closures
of all the functions in the definition.
For example, in the following program, f needs access to
the closure of g, and the other way around:
(letrec ((f (fun (l) … (compose f g) …))
 (g (fun (l) … (compose g f) …)))
 …)
Solutions:

1. use cyclic closures, or
2. share a single closure with interior pointers – but note

that the resulting interior pointers make the job of the
garbage collector harder.

22

Mutually-recursive closures

shared closurescyclic closures

code ptr. f

v1

v2

v3

code ptr. g

w1

w2

closure for f closure for g
code ptr. f

code ptr. g

v1

v2

v3

w1

w2

closure for f

closure for g

23

CPS/L3

closure conversion

24

Functions in CPS/L3

In the L3 compiler, we represent L3 functions using flat
closures.
Flat closures are simply blocks tagged with a tag reserved
for functions – we choose 202. The first element of the block
contains the code pointer while the other elements – if any –
contain the environment of the closure.

25

CPS/L3 closure conversion

In the L3 compiler, closure conversion is not a separate
phase. Rather, it is the part of the data conversion phase that
takes care of representing functions.
Closure conversion is therefore specified exactly like the
data representation phase.

26

CPS/L3 free variables
The F function computes the free variables of a CPS/L3 term:

F[(letl ((n l)) e)] = F[e] \ { n }
F[(letp ((n (p n1 …))) e)] =
 (F[e] \ { n }) ∪ { n1, … }

F[(letk ((n (cont (a1 …) b))) e)] =
 F[e] ∪ (F[b] \ { a1, … })

F[(letf ((f1 (fun (k1 n1,1 …) e1)) …) e)] =
 (F[e] ∪ (F[e1] \ { n1,1, … }) ∪ …) \ { f1, … }

F[(appk k n1 …)] = { n1, … }
F[(appf f k n1 …)] = { f, n1, … }
F[(if (p n1 …) kt kf)] = { n1, … }

Note: CPS/L3 scoping rules ensure that continuation
variables are never free, so we ignore them.

27

Notation

To simplify some of the following slides, we assume that
integer literals can be used as arguments of primitives. For
example, we write:
(letp ((n (block-get b 1))) …)

instead of:
(let* ((c1 1)
 (n (block-get b c1)))
 …)

28

Function definition
⟦(letf ((f1 (fun (k1 n1,1 …) e1)) …) e)⟧ =
 (letf ((w1 (fun (k1 env1 n1,1 …)
 (let* ((v1 (block-get env1 1))
 …)
 ⟦e1⟧{f1→env1}{FV1(0)→v1}{…}))
 …)
 (let* ((f1 (block-alloc-202 |FV1|+1))
 …
 (t1 (block-set! f1 0 w1))
 (t2 (block-set! f1 1 FV1(0)))
 …)
 ⟦e⟧)

FVi = an (arbitrary) ordering of the set F[ei] \ { fi, ni,1, … }

closed
version of f1

closure
allocationclosure

initialization

29

Function application

Function application has to be transformed in order to
extract the code pointer from the closure and pass the
closure as the first argument after the return continuation:
⟦(appf n nk n1 …)⟧ =
 (letp ((f (block-get n 0)))
 (appf f nk n n1 …))

30

Function test

Functions being represented as tagged blocks, checking
that an arbitrary object is a function amounts to checking
that it is a tagged block and if it is, that its tag is 202.
This can be done directly in L3, as a library function:
(def function?
 (fun (o)
 (and (@block? o)
 (@= 202 (@block-tag o)))))

31

Exercise

We have seen two techniques to represent the closures of
mutually-recursive functions: cyclic closures and shared
closures.
Which of these two techniques does our transformation use
(explain) ?

32

Hoisting CPS/L3
functions

33

Function hoisting
After closure conversion, all functions in the program are
closed. Therefore, it is possible to hoist them all to a single
outer letf.
Once this is done, the program has the following simple
form:
(letf (all functions of the program)
 main program code)

where the main program code does not contain any
function definition (letf expression).
Hoisting functions to the top level simplifies the shape of the
program and can make the job of later phases – e.g.
assembly code generation – easier.

34

CPS/L3 hoisting (1)

⟦(letl ((n l)) e)⟧ =
 (letf (fs)
 (letl ((n l)) e′))
 if ⟦e⟧ = (letf (fs) e′)
⟦(letp ((n (p n1 …))) e)⟧ =
 (letf (fs)
 (letp ((n (p n1 …))) e′))
 if ⟦e⟧ = (letf (fs) e′)

35

CPS/L3 hoisting (2)

⟦(letk ((n (cont (n1 …) b))) e)⟧ =
 (letf (fs1 fs2)
 (letk ((n (cont (n1 …) b′))) e′))
 if ⟦b⟧ = (letf (fs1) b′)
 and ⟦e⟧ = (letf (fs2) e′)
⟦(letf ((f1 (fun (n1,1 …) e1)) …) e)⟧ =
 (letf ((f1 (fun (n1,1 …) e1′) … fs1 … fs) e′)
 if ⟦ei⟧ = (letf (fsi) ei′)
 and ⟦e⟧ = (letf (fs) e′)
⟦e⟧ when e is any other kind of expression =
 (letf () e)

36

Closures and
objects

37

Closures and objects

There is a strong similarity between closures and objects:
closures can be seen as objects with a single method –
containing the code of the closure – and a set of fields – the
environment.
In Java, the ability to define nested classes can be used to
simulate closures, but the syntax is too heavyweight to be
used often.
In Scala, a special syntax exists for anonymous functions,
which are translated to nested classes.

38

makeAdder in Scala

To see how closures are handled in Scala, let's look at how
the translation of the Scala equivalent of the make-adder
function:
def makeAdder(x: Int): Int⇒Int =
 { y: Int ⇒ x+y }
val increment = makeAdder(1)
increment(41)

39

makeAdder translated

class Anon extends Function1[Int,Int] {
 private val x: Int;
 def this(x: Int) = { this.x = x }
 def apply(y: Int): Int = this.x + y
}

def makeAdder(x: Int): Function1[Int,Int] =
 new Anon(x)
val increment = makeAdder(1)
increment.apply(41)

(Hoisted) closure class: the code is in
the apply method, the environment in
the object itself: it's a flat closure.

closure application (the closure
is passed implicitly as this)

closure creation

env. extraction

env. initialization

40

