Closure conversion or: data representation for functions

Advanced Compiler Construction Michel Schinz - 2013-03-14

Higher-order functions

Higher-order function

A higher-order function (HOF) is a function that either:

- takes another function as argument, or
- returns a function.

Many languages offer higher-order functions, but not all provide the same power...

HOFs in C

In C, it is possible to pass a function as an argument, and to return a function as a result.

However, C functions cannot be nested: they must all appear at the top level. This severely restricts their usefulness, but greatly simplifies their implementation - they can be represented as simple code pointers.

HOFs in functional languages

In functional languages - Scala, OCaml, Haskell, etc. - functions can be nested, and they can survive the scope that defined them.

This is very powerful as it permits the definition of functions that return "new" functions – e.g. functional composition. However, as we will see, it also complicates the representation of functions, as simple code pointers are no longer sufficient.

HOF example

To illustrate the issues related to the representation of functions in a functional language, we will use the following L₃ example:

```
(def make-adder
  (fun (x)
        (fun (y) (@+ x y))))
(def increment (make-adder 1))
(increment 41) ⇒ 42
(def decrement (make-adder -1))
(decrement 42) ⇒ 41
```

Representing adders

To represent the functions returned by make-adder, there are basically two choices:

- Use simple code pointers. Unfortunately, this implies run-time code generation, as each function returned by make-adder is different!
- 2. Find another representation for functions, which does not depend on run-time code generation.

Closures

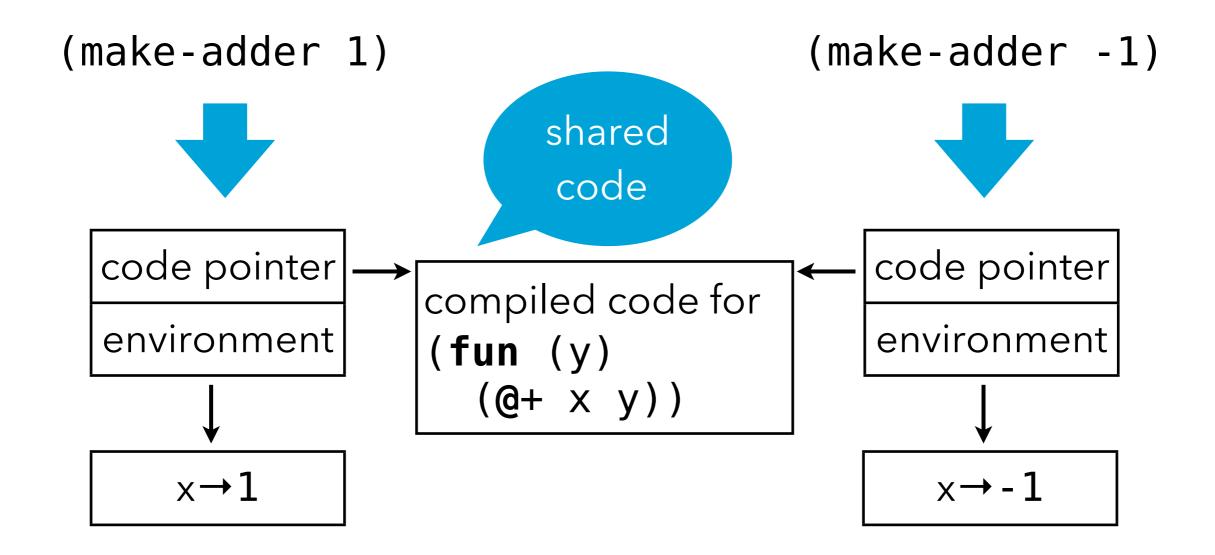
Closures

To adequately represent the functions returned by **make-adder**, their code pointer must be augmented with the value of x.

Such a combination of a **code pointer** and an **environment** giving the values of the free variable(s) - here x - is called a **closure**.

The name refers to the fact that the pair composed of the code pointer and the environment is closed, i.e. self-contained.

Closures



The code of a closure must be evaluated in its environment, so that **x** is "known".

Introducing closures

Using closures instead of function pointers changes the way functions are manipulated at run time:

- function abstraction builds and returns a closure instead of a simple code pointer,
- function application extracts the code pointer from the closure, and invokes it with the environment as an additional argument.

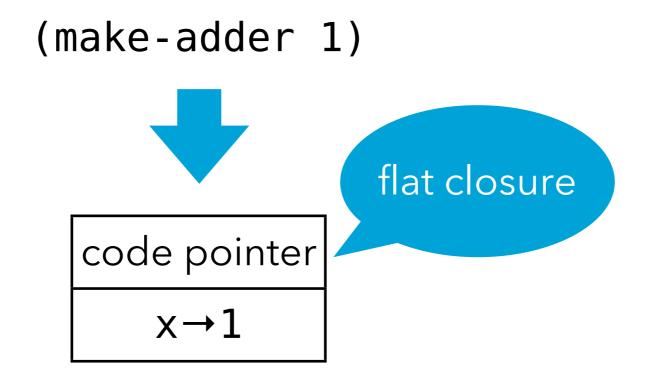
Representing closures

During function application, nothing is known about the closure being called - it can be any closure in the program. The code pointer must therefore be at a known and constant location so that it can be extracted.

The values contained in the environment, however, are not used during application itself: they will only be accessed by the function body. This provides some freedom to place them.

Flat closures

In **flat** (or **one-block**) closures, the environment is "inlined" into the closure itself, instead of being referred from it. The closure plays the role of the environment.



Exercise

Compiling closures

Closure conversion

In a compiler, closures can be implemented by a simplification phase, called **closure conversion**.

Closure conversion transforms a program in which functions can have free variables into an equivalent one containing only closed functions.

The output of closure conversion is therefore a program in which functions can be represented as code pointers.

Closure conversion

Closure conversion is nothing more than data representation for functions: it encodes the high-level notion of functions of the source language using the low-level concepts of the target language – in this case heap-allocated blocks and code pointers.

Free variables

The **free variables** of a function are the variables that are used but not defined in that function - i.e. they are defined in some enclosing scope.

The make-adder example contains two functions:

The outer one does not have any free variable: it is a closed function. The inner one has a single free variable: x.

Closing functions

Functions are closed by adding a parameter representing the environment, and using it in the function's body to access free variables.

Function abstraction and application must of course be adapted accordingly:

- abstraction must create and initialize the closure,
- application must pass the environment as an additional parameter.

Closing example

Assuming the existence of abstract closure-make and closure-get functions, a closure conversion phase could transform the make-adder example as follows:

```
(def make-adder (fun (x)
                       (fun (y) (@+ x y)))
(make-adder 1)
(def make-adder
  (closure-make
     (fun (env<sub>1</sub> \times)
       (closure-make
          (fun (env<sub>2</sub> y)
            (@+ (closure-get env<sub>2</sub> 1) y))
          \times))))
((closure-get make-adder 0) make-adder 1)
```

Recursive closures

Recursive functions need access to their own closure. For example:

```
(letrec ((f (fun (l) ... (map f l) ...)))
...)
```

Several techniques can be used to give a closure access to itself:

- the closure here f can be treated as a free variable, and put in its own environment - leading to a cyclic closure,
- the closure can be rebuilt from scratch,
- with flat closures, the environment is the closure, and can be reused directly.

Mutually-recursive closures

Mutually-recursive functions all need access to the closures of all the functions in the definition.

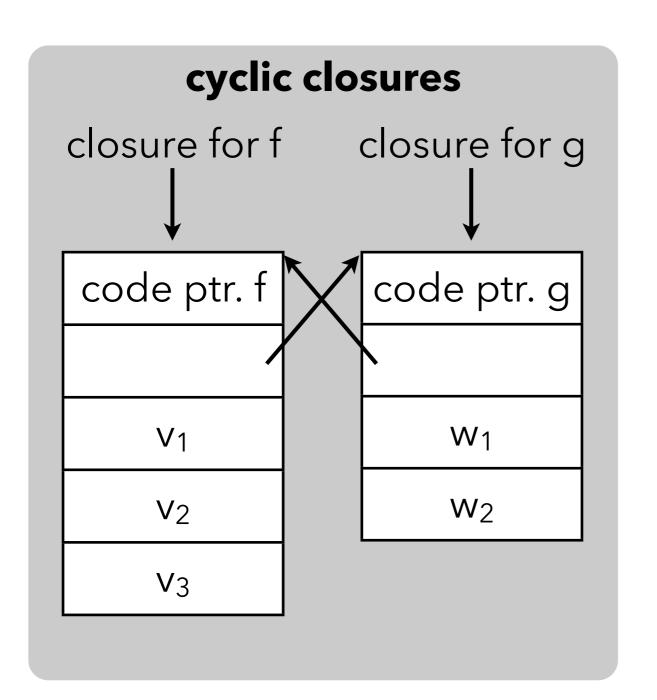
For example, in the following program, f needs access to the closure of g, and the other way around:

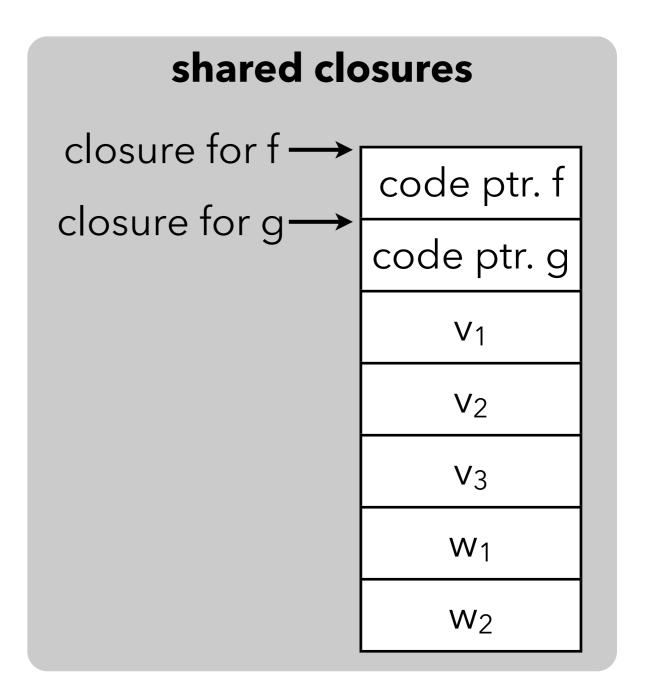
```
(letrec ((f (fun (l) ... (compose f g) ...))
(g (fun (l) ... (compose g f) ...))
...)
```

Solutions:

- 1. use cyclic closures, or
- 2. share a single closure with interior pointers but note that the resulting interior pointers make the job of the garbage collector harder.

Mutually-recursive closures





CPS/L₃ closure conversion

Functions in CPS/L₃

In the L₃ compiler, we represent L₃ functions using flat closures.

Flat closures are simply blocks tagged with a tag reserved for functions - we choose 202. The first element of the block contains the code pointer while the other elements - if any - contain the environment of the closure.

CPS/L₃ closure conversion

In the L₃ compiler, closure conversion is not a separate phase. Rather, it is the part of the data conversion phase that takes care of representing functions.

Closure conversion is therefore specified exactly like the data representation phase.

CPS/L₃ free variables

The F function computes the free variables of a CPS/L₃ term:

```
F[(let_1 ((nl)) e)] = F[e] \setminus \{n\}
F[(let_p ((n (pn_1...)))e)] =
 (F[e] \setminus \{n\}) \cup \{n_1, ...\}
F[(let_k ((n(cont (a_1...)b)))e)] =
 F[e] \cup (F[b] \setminus \{a_1, ... \})
F[(let_f ((f_1 (fun (k_1 n_{1,1}...) e_1))...) e)] =
 (F[e] \cup (F[e_1] \setminus \{ n_{1,1}, ... \}) \cup ...) \setminus \{ f_1, ... \}
F[(app_k k n_1 ...)] = \{ n_1, ... \}
F[(app_f fk n_1 ...)] = \{f, n_1, ...\}
F[(if (p n_1 ...) kt kf)] = \{ n_1, ... \}
```

Note: CPS/L₃ scoping rules ensure that continuation variables are never free, so we ignore them.

Notation

To simplify some of the following slides, we assume that integer literals can be used as arguments of primitives. For example, we write:

Function definition

closed version of f₁

```
[(let_f ((f_1 (fun (k_1 n_{1,1}...) e_1))...)e)] =
      (let_f (w1 (fun (k_1 env1 n_{1,1}...)
                         (let* ((v1 (block-get env1 1))
                                    ...)
                            [e_1]\{f_1 \rightarrow env1\}\{FV_1(0) \rightarrow v1\}\{...\})
                  ((f_1 (block-alloc-202 |FV_1|+1))
                                                                     closure
  closure
                    (\underline{t1} (block-set! f_1 0 w1))
                                                                    allocation
initialization
                    (\underline{t2} (block-set! f_1 1 FV_1(0))
                    ...)
            [e])
  FV_i = an (arbitrary) ordering of the set <math>F[e_i] \setminus \{f_i, n_{i,1}, \dots\}
```

Function application

Function application has to be transformed in order to extract the code pointer from the closure and pass the closure as the first argument after the return continuation:

Function test

Functions being represented as tagged blocks, checking that an arbitrary object is a function amounts to checking that it is a tagged block and if it is, that its tag is 202.

This can be done directly in L₃, as a library function:

(def function?

(fun (0)

(and (@block? 0)

(@= 202 (@block-tag o)))))

Exercise

We have seen two techniques to represent the closures of mutually-recursive functions: cyclic closures and shared closures.

Which of these two techniques does our transformation use (explain)?

Hoisting CPS/L₃ functions

Function hoisting

After closure conversion, all functions in the program are closed. Therefore, it is possible to **hoist** them all to a single outer let_f.

Once this is done, the program has the following simple form:

(**let**_f (all functions of the program) main program code)

where the main program code does not contain any function definition (let_f expression).

Hoisting functions to the top level simplifies the shape of the program and can make the job of later phases - e.g. assembly code generation - easier.

CPS/L₃ hoisting (1)

```
[(let1 ((nl)) e)] =
    (letf (fs)
          (let1 ((nl)) e'))
    if[e] = (letf (fs) e')
[(letp ((n (pn1 ...))) e)] =
        (letf (fs)
           (letp ((n (pn1 ...))) e'))
    if[e] = (letf (fs) e')
```

CPS/L3 hoisting (2)

```
[(let_k ((n (cont (n_1...)b)))e)] =
   (let<sub>f</sub> (fs_1 fs_2)
       (let_k ((n (cont (n_1 ...) b'))) e'))
   if \llbracket b \rrbracket = (let_f (fs_1) b')
   and [e] = (let_f (fs_2) e')
[(let_f ((f_1 (fun (n_{1,1}...)e_1))...)e)] =
   (let<sub>f</sub> ((f<sub>1</sub> (fun (n_{1,1} ...) e_1) ... fs<sub>1</sub> ... fs) e)
   if [e_i] = (let_f (fs_i) e_i')
   and [e] = (let_f (fs) e')
[e] when e is any other kind of expression =
   (let<sub>f</sub> ()e)
```

Closures and objects

Closures and objects

There is a strong similarity between closures and objects: closures can be seen as objects with a single method - containing the code of the closure - and a set of fields - the environment.

In Java, the ability to define nested classes can be used to simulate closures, but the syntax is too heavyweight to be used often.

In Scala, a special syntax exists for anonymous functions, which are translated to nested classes.

makeAdder in Scala

To see how closures are handled in Scala, let's look at how the translation of the Scala equivalent of the make-adder function:

```
def makeAdder(x: Int): Int⇒Int =
    { y: Int ⇒ x+y }
val increment = makeAdder(1)
increment(41)
```

makeAdder translated

(Hoisted) closure class: the code is in the apply method, the environment in the object itself: it's a flat closure.

```
class Anon extends Function1[Int,Int] {
   private val x: Int;
   def this(x: Int) = { this.x = x }
   def apply(y: Int): Int = this.x + y
}

def makeAdder(x: Int): Function1[Int,Int] =
   new Anon(x)
val increment = makeAdder(1)
increment.apply(41)
```

closure application (the closure is passed implicitly as this)