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Startup

def startup[A, B, C](a: =>A, b: =>B, c: =>C): (A, B, C) = {

val taskB = task { b }

val taskC = task { c }

(a, taskB.join(), taskC.join())

}
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Factory

Everybody has to work. Everybody does the same work.
How can we express parallelism here?

def factory[A, B](items: Seq[A])(f: A => B): Seq[B]
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Data-Parallelism

Previously, we learned about task-parallel programming.

A form of parallelization that distributes execution processes
across computing nodes.

We know how to express parallel programs with task and parallel

constructs.
Next, we learn about the data-parallel programming.

A form of parallelization that distributes data across computing
nodes.
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Data-Parallel Programming Model

The simplest form of data-parallel programming is the parallel for loop.
Example: initializing the array values.

def initializeArray(xs: Array[Int])(value: Int): Unit = {

for (i <- (0 until xs.length).par) {

xs(i) = value

}

}

The parallel for loop is not very functional – it can only affect the
program through side-effects.
As long as iterations of the parallel loop write to separate memory
locations, the program is correct.



Example: Mandelbrot Set

Although simple, parallel for loop allows writing interesting programs.

Render a set of complex numbers in the plane for which the sequence
zn+1 = z2n + c does not approach infinity.



Example: Mandelbrot Set

We approximate the definition of the Mandelbrot set – as long as the
absolute value of zn is less than 2, we compute zn+1 until we do
maxIterations.

private def computePixel(xc: Double, yc: Double, maxIterations: Int): Int = {

var i = 0

var x, y = 0.0

while (x * x + y * y < 4 && i < maxIterations) {

val xt = x * x - y * y + xc

val yt = 2 * x * y + yc

x = xt; y = yt

i += 1

}

color(i)

}



Example: Mandelbrot Set (Data-Parallel)

How do we render the set using data-parallel programming?

def render(): Unit = {

for (idx <- 0 until image.length) {

val (xc, yc) = coordinatesFor(idx)

image(idx) = computePixel(xc, yc, maxIterations)

}

}

def parRender(): Unit = {

for (idx <- (0 until image.length).par) {

val (xc, yc) = coordinatesFor(idx)

image(idx) = computePixel(xc, yc, maxIterations)

}

}



Rendering the Mandelbrot Set: Demo

Time for a demo!



Rendering the Mandelbrot Set: Demo

Time for a demo!
Summary:

▶ task-parallel implementation – the slowest.
▶ data-parallel implementation – about 2× faster.



Workload

Different data-parallel programs have different workloads.
Workload is a function that maps each input element to the amount of
work required to process it.
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Defined by a constant function: w(i) = const



Uniform Workload

Defined by a constant function: w(i) = const

Easy to parallelize.
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Irregular Workload

Defined by an arbitrary function: w(i) = f(i)

In the Mandelbrot case: w(i) = #iterations
The workload depends on the problem instance.
Goal of the data-parallel scheduler: efficiently balance the workload across
processors without any knowledge about the w(i).


