Data-Parallel Programming

Parallel Programming and Data Analysis

Aleksandar Prokopec
Everybody has to work. Work tasks are diverse.
def startup[A, B, C](a: =>A, b: =>B, c: =>C): (A, B, C) = {
 val taskB = task { b }
 val taskC = task { c }
 (a, taskB.join(), taskC.join())
}
Factory
Everybody has to work. Everybody does the same work.
Everybody has to work. Everybody does the same work.

How can we express parallelism here?
Everybody has to work. Everybody does the same work.

How can we express parallelism here?

def factory[A, B](items: Seq[A])
 Everybody has to work. Everybody does the same work.

How can we express parallelism here?

```python
def factory[A, B](items: Seq[A])(f: A => B): Seq[B]
```
Previously, we learned about task-parallel programming.

* A form of parallelization that distributes execution processes across computing nodes.

We know how to express parallel programs with task and parallel constructs.
Data-Parallelism

Previously, we learned about task-parallel programming.

A form of parallelization that distributes execution processes across computing nodes.

We know how to express parallel programs with task and parallel constructs.

Next, we learn about the data-parallel programming.

A form of parallelization that distributes data across computing nodes.
Data-Parallel Programming Model

The simplest form of data-parallel programming is the parallel for loop.

Example: initializing the array values.
Data-Parallel Programming Model

The simplest form of data-parallel programming is the parallel for loop. Example: initializing the array values.

``` scala
def initializeArray(xs: Array[Int])(value: Int): Unit
```
Data-Parallel Programming Model

The simplest form of data-parallel programming is the parallel for loop. Example: initializing the array values.

```scala
def initializeArray(xs: Array[Int])(value: Int): Unit = {
  for (i <- (0 until xs.length).par) {
  }
}
```
The simplest form of data-parallel programming is the parallel for loop.

Example: initializing the array values.

```scala
def initializeArray(xs: Array[Int])(value: Int): Unit = {
  for (i <- (0 until xs.length).par) {
    xs(i) = value
  }
}
```
The simplest form of data-parallel programming is the parallel for loop.

Example: initializing the array values.

```scala
def initializeArray(xs: Array[Int])(value: Int): Unit = {
  for (i <- (0 until xs.length).par) {
    xs(i) = value
  }
}
```

The parallel for loop is not very functional – it can only affect the program through side-effects.
The simplest form of data-parallel programming is the parallel for loop.

Example: initializing the array values.

```scala
def initializeArray(xs: Array[Int])(value: Int): Unit = {
  for (i <- (0 until xs.length).par) {
    xs(i) = value
  }
}
```

The parallel for loop is not very functional – it can only affect the program through side-effects.

As long as iterations of the parallel loop write to separate memory locations, the program is correct.
Example: Mandelbrot Set

Although simple, parallel for loop allows writing interesting programs.

Render a set of complex numbers in the plane for which the sequence $z_{n+1} = z_n^2 + c$ does not approach infinity.
We approximate the definition of the Mandelbrot set – as long as the absolute value of \(z_n \) is less than 2, we compute \(z_{n+1} \) until we do maxIterations.

```scala
private def computePixel(xc: Double, yc: Double, maxIterations: Int): Int = {
  var i = 0
  var x, y = 0.0
  while (x * x + y * y < 4 && i < maxIterations) {
    val xt = x * x - y * y + xc
    val yt = 2 * x * y + yc
    x = xt; y = yt
    i += 1
  }
  color(i)
}
```
How do we render the set using data-parallel programming?

```scala
def render(): Unit = {
  for (idx <- 0 until image.length) {
    val (xc, yc) = coordinatesFor(idx)
    image(idx) = computePixel(xc, yc, maxIterations)
  }
}

def parRender(): Unit = {
  for (idx <- (0 until image.length).par) {
    val (xc, yc) = coordinatesFor(idx)
    image(idx) = computePixel(xc, yc, maxIterations)
  }
}
```
Rendering the Mandelbrot Set: Demo

Time for a demo!
Time for a demo!

Summary:

- task-parallel implementation – the slowest.
- data-parallel implementation – about $2\times$ faster.
Workload

Different data-parallel programs have different workloads.

Workload is a function that maps each input element to the amount of work required to process it.
Uniform Workload

Defined by a constant function: $w(i) = \text{const}$
Uniform Workload

Defined by a constant function: \(w(i) = const \)

Easy to parallelize.
Irregular Workload

Defined by an arbitrary function: $w(i) = f(i)$
Irregular Workload

Defined by an arbitrary function: \(w(i) = f(i) \)

In the Mandelbrot case: \(w(i) = \#\text{iterations} \)

The workload depends on the problem instance.
Irregular Workload

Defined by an arbitrary function: \(w(i) = f(i) \)

In the Mandelbrot case: \(w(i) = \# \text{iterations} \)

The workload depends on the problem instance.

Goal of the data-parallel scheduler: efficiently balance the workload across processors without any knowledge about the \(w(i) \).