
Data-Parallel Programming

Parallel Programming and Data Analysis
Aleksandar Prokopec



Startup



Startup

Everybody has to work. Work tasks are diverse.



Startup

def startup[A, B, C](a: =>A, b: =>B, c: =>C): (A, B, C) = {

val taskB = task { b }

val taskC = task { c }

(a, taskB.join(), taskC.join())

}



Factory



Factory

Everybody has to work. Everybody does the same work.



Factory

Everybody has to work. Everybody does the same work.
How can we express parallelism here?



Factory

Everybody has to work. Everybody does the same work.
How can we express parallelism here?

def factory[A, B](items: Seq[A])



Factory

Everybody has to work. Everybody does the same work.
How can we express parallelism here?

def factory[A, B](items: Seq[A])(f: A => B): Seq[B]



Data-Parallelism

Previously, we learned about task-parallel programming.

A form of parallelization that distributes execution processes
across computing nodes.

We know how to express parallel programs with task and parallel

constructs.



Data-Parallelism

Previously, we learned about task-parallel programming.

A form of parallelization that distributes execution processes
across computing nodes.

We know how to express parallel programs with task and parallel

constructs.
Next, we learn about the data-parallel programming.

A form of parallelization that distributes data across computing
nodes.



Data-Parallel Programming Model

The simplest form of data-parallel programming is the parallel for loop.
Example: initializing the array values.



Data-Parallel Programming Model

The simplest form of data-parallel programming is the parallel for loop.
Example: initializing the array values.

def initializeArray(xs: Array[Int])(value: Int): Unit



Data-Parallel Programming Model

The simplest form of data-parallel programming is the parallel for loop.
Example: initializing the array values.

def initializeArray(xs: Array[Int])(value: Int): Unit = {

for (i <- (0 until xs.length).par) {

}

}



Data-Parallel Programming Model

The simplest form of data-parallel programming is the parallel for loop.
Example: initializing the array values.

def initializeArray(xs: Array[Int])(value: Int): Unit = {

for (i <- (0 until xs.length).par) {

xs(i) = value

}

}



Data-Parallel Programming Model

The simplest form of data-parallel programming is the parallel for loop.
Example: initializing the array values.

def initializeArray(xs: Array[Int])(value: Int): Unit = {

for (i <- (0 until xs.length).par) {

xs(i) = value

}

}

The parallel for loop is not very functional – it can only affect the
program through side-effects.



Data-Parallel Programming Model

The simplest form of data-parallel programming is the parallel for loop.
Example: initializing the array values.

def initializeArray(xs: Array[Int])(value: Int): Unit = {

for (i <- (0 until xs.length).par) {

xs(i) = value

}

}

The parallel for loop is not very functional – it can only affect the
program through side-effects.
As long as iterations of the parallel loop write to separate memory
locations, the program is correct.



Example: Mandelbrot Set

Although simple, parallel for loop allows writing interesting programs.

Render a set of complex numbers in the plane for which the sequence
zn+1 = z2n + c does not approach infinity.



Example: Mandelbrot Set

We approximate the definition of the Mandelbrot set – as long as the
absolute value of zn is less than 2, we compute zn+1 until we do
maxIterations.

private def computePixel(xc: Double, yc: Double, maxIterations: Int): Int = {

var i = 0

var x, y = 0.0

while (x * x + y * y < 4 && i < maxIterations) {

val xt = x * x - y * y + xc

val yt = 2 * x * y + yc

x = xt; y = yt

i += 1

}

color(i)

}



Example: Mandelbrot Set (Data-Parallel)

How do we render the set using data-parallel programming?

def render(): Unit = {

for (idx <- 0 until image.length) {

val (xc, yc) = coordinatesFor(idx)

image(idx) = computePixel(xc, yc, maxIterations)

}

}

def parRender(): Unit = {

for (idx <- (0 until image.length).par) {

val (xc, yc) = coordinatesFor(idx)

image(idx) = computePixel(xc, yc, maxIterations)

}

}



Rendering the Mandelbrot Set: Demo

Time for a demo!



Rendering the Mandelbrot Set: Demo

Time for a demo!
Summary:

▶ task-parallel implementation – the slowest.
▶ data-parallel implementation – about 2× faster.



Workload

Different data-parallel programs have different workloads.
Workload is a function that maps each input element to the amount of
work required to process it.



Uniform Workload

Defined by a constant function: w(i) = const



Uniform Workload

Defined by a constant function: w(i) = const

Easy to parallelize.



Irregular Workload

Defined by an arbitrary function: w(i) = f(i)



Irregular Workload

Defined by an arbitrary function: w(i) = f(i)

In the Mandelbrot case: w(i) = #iterations
The workload depends on the problem instance.



Irregular Workload

Defined by an arbitrary function: w(i) = f(i)

In the Mandelbrot case: w(i) = #iterations
The workload depends on the problem instance.
Goal of the data-parallel scheduler: efficiently balance the workload across
processors without any knowledge about the w(i).


