
Implementing Combiners

Parallel Programming and Data Analysis
Aleksandar Prokopec



Combiners

Let’s recall combiners from the previous lecture:

trait Combiner[T, Repr] extends Builder[T, Repr] {

def combine(that: Combiner[T, Repr]): Combiner[T, Repr]

}



Combiners

Let’s recall combiners from the previous lecture:

trait Combiner[T, Repr] extends Builder[T, Repr] {

def combine(that: Combiner[T, Repr]): Combiner[T, Repr]

}

trait Builder[T, Repr] {

def +=(elem: T): this.type

def result: Repr

}



Combiners

Let’s recall combiners from the previous lecture:

trait Combiner[T, Repr] extends Builder[T, Repr] {

def combine(that: Combiner[T, Repr]): Combiner[T, Repr]

}

trait Builder[T, Repr] {

def +=(elem: T): this.type

def result: Repr

}

How can we implement the combine method efficiently?



Combiners

▶ when Repr is a set or a map, combine represents union



Combiners

▶ when Repr is a set or a map, combine represents union
▶ when Repr is a sequence, combine represents concatenation



Combiners

▶ when Repr is a set or a map, combine represents union
▶ when Repr is a sequence, combine represents concatenation

The combine operation must be efficient, i.e. execute in O(P · log n) time,
where n is the number of elements, and P is the number of processors.



Combiners

▶ when Repr is a set or a map, combine represents union
▶ when Repr is a sequence, combine represents concatenation

The combine operation must be efficient, i.e. execute in O(P · log n) time,
where n is the number of elements, and P is the number of processors.
Question: Is the method concat efficient?

def concat(xs: Array[Int], ys: Array[Int]): Array[Int] = {

val r = new Array[Int](xs.length + ys.length)

Array.copy(xs, 0, r, 0, xs.length)

Array.copy(ys, 0, r, xs.length, ys.length)

r

}



Sets

Typically, set data structures have efficient lookup, insertion and deletion.



Sets

Typically, set data structures have efficient lookup, insertion and deletion.

▶ hash tables – expected O(1)



Sets

Typically, set data structures have efficient lookup, insertion and deletion.

▶ hash tables – expected O(1)

▶ balanced trees – O(log n)



Sets

Typically, set data structures have efficient lookup, insertion and deletion.

▶ hash tables – expected O(1)

▶ balanced trees – O(log n)
▶ linked lists – O(n)



Sets

Typically, set data structures have efficient lookup, insertion and deletion.

▶ hash tables – expected O(1)

▶ balanced trees – O(log n)
▶ linked lists – O(n)

Most set implementations do not have efficient union operation.



Sequences

Let’s see the operation complexity for sequences.



Sequences

Let’s see the operation complexity for sequences.

▶ mutable linked lists – O(1) prepend and append, O(n) insertion



Sequences

Let’s see the operation complexity for sequences.

▶ mutable linked lists – O(1) prepend and append, O(n) insertion
▶ functional (cons) lists – O(1) prepend operations, everything else

O(n)



Sequences

Let’s see the operation complexity for sequences.

▶ mutable linked lists – O(1) prepend and append, O(n) insertion
▶ functional (cons) lists – O(1) prepend operations, everything else

O(n)
▶ array lists – amortized O(1) append, O(1) random accesss, otherwise

O(n)



Sequences

Let’s see the operation complexity for sequences.

▶ mutable linked lists – O(1) prepend and append, O(n) insertion
▶ functional (cons) lists – O(1) prepend operations, everything else

O(n)
▶ array lists – amortized O(1) append, O(1) random accesss, otherwise

O(n)

Mutable linked list can have O(1) concatenation, but for most sequences,
concatenation is O(n).



Two-Phase Construction

Most data structures can be constructed in parallel with two-phase
construction, which uses an intermediate data structure.



Two-Phase Construction

Most data structures can be constructed in parallel with two-phase
construction, which uses an intermediate data structure.
The intermediate data structure is a data structure that:

▶ has efficient combine method – O(P · log n) or better



Two-Phase Construction

Most data structures can be constructed in parallel with two-phase
construction, which uses an intermediate data structure.
The intermediate data structure is a data structure that:

▶ has efficient combine method – O(P · log n) or better
▶ has efficient += method



Two-Phase Construction

Most data structures can be constructed in parallel with two-phase
construction, which uses an intermediate data structure.
The intermediate data structure is a data structure that:

▶ has efficient combine method – O(P · log n) or better
▶ has efficient += method
▶ the result method is allowed to be O(n), but can be parallelized



Example: Array Combiner

Let’s implement a combiner for arrays.
Two arrays cannot be efficiently concatenated, so we will do a two-phase
construction.



Example: Array Combiner

Let’s implement a combiner for arrays.
Two arrays cannot be efficiently concatenated, so we will do a two-phase
construction.

class ArrayCombiner[T <: AnyRef: ClassTag](val parallelism: Int) {

private var numElems = 0

private val buffers = new ArrayBuffer[ArrayBuffer[T]]

buffers += new ArrayBuffer[T]



Example: Array Combiner

First, we implement the += method:

def +=(elem: T) = {

buffers.last += elem

numElems += 1

this

}



Example: Array Combiner

First, we implement the += method:

def +=(elem: T) = {

buffers.last += elem

numElems += 1

this

}

Amortized O(1), low constant factors – as efficient as an array buffer.



Example: Array Combiner

Next, we implement the combine method:

def combine(that: ArrayCombiner[T]) = {

buffers ++= that.buffers

numElems += that.numElems

this

}



Example: Array Combiner

Next, we implement the combine method:

def combine(that: ArrayCombiner[T]) = {

buffers ++= that.buffers

numElems += that.numElems

this

}

O(P), assuming that buffers contains no more than O(P) nested array
buffers.



Example: Array Combiner

Finally, we implement the result method:

def result: Array[T] = {

val step = math.max(1, numElems / parallelism)

val array = new Array[T](numElems)

val starts = (0 until numElems by step) :+ numElems

val chunks = starts.zip(starts.tail)

val tasks = for ((from, end) <- chunks) yield task {

copyTo(array, from, end)

}

tasks.foreach(_.join())

array

}



Benchmark

Demo – we will test the performance of the aggregate method:

xs.par.aggregate(newCombiner)(_ += _, _ combine _).result


