Implementing Combiners

Parallel Programming and Data Analysis

Aleksandar Prokopec
Let's recall combiners from the previous lecture:

```scala
trait Combiner[T, Repr] extends Builder[T, Repr] {
  def combine(that: Combiner[T, Repr]): Combiner[T, Repr]
}
```
Let's recall combiners from the previous lecture:

```scala
trait Combiner[T, Repr] extends Builder[T, Repr] {
  def combine(that: Combiner[T, Repr]): Combiner[T, Repr]
}
```

```scala
trait Builder[T, Repr] {
  def +=(elem: T): this.type
  def result: Repr
}
```
Let's recall combiners from the previous lecture:

``` scala
trait Combiner[T, Repr] extends Builder[T, Repr] {
  def combine(that: Combiner[T, Repr]): Combiner[T, Repr]
}
```

``` scala
trait Builder[T, Repr] {
  def +=(elem: T): this.type
  def result: Repr
}
```

How can we implement the combine method *efficiently*?
Combiners

- when Repr is a set or a map, combine represents union
Combiners

- when `Repr` is a set or a map, `combine` represents union
- when `Repr` is a sequence, `combine` represents concatenation
Combiners

- when \(\text{Repr} \) is a set or a map, combine represents union
- when \(\text{Repr} \) is a sequence, combine represents concatenation

The combine operation must be efficient, i.e. execute in \(O(P \cdot \log n) \) time, where \(n \) is the number of elements, and \(P \) is the number of processors.
Combiners

- when Repr is a set or a map, combine represents union
- when Repr is a sequence, combine represents concatenation

The combine operation must be efficient, i.e. execute in $O(P \cdot \log n)$ time, where n is the number of elements, and P is the number of processors.

Question: Is the method `concat` efficient?

```scala
def concat(xs: Array[Int], ys: Array[Int]): Array[Int] = {
  val r = new Array[Int](xs.length + ys.length)
  Array.copy(xs, 0, r, 0, xs.length)
  Array.copy(ys, 0, r, xs.length, ys.length)
  r
}
```
Sets

Typically, set data structures have efficient lookup, insertion and deletion.
Sets

Typically, set data structures have efficient lookup, insertion and deletion.

- hash tables – expected $O(1)$
Sets

Typically, set data structures have efficient lookup, insertion and deletion.

- hash tables – expected $O(1)$
- balanced trees – $O(\log n)$
Typically, set data structures have efficient lookup, insertion and deletion.

- hash tables – expected $O(1)$
- balanced trees – $O(\log n)$
- linked lists – $O(n)$
Typically, set data structures have efficient lookup, insertion and deletion.

- hash tables – expected $O(1)$
- balanced trees – $O(\log n)$
- linked lists – $O(n)$

Most set implementations do not have efficient union operation.
Sequences

Let’s see the operation complexity for sequences.
Sequences

Let’s see the operation complexity for sequences.

- mutable linked lists – $O(1)$ prepend and append, $O(n)$ insertion
Sequences

Let’s see the operation complexity for sequences.

- mutable linked lists – $O(1)$ prepend and append, $O(n)$ insertion
- functional (cons) lists – $O(1)$ prepend operations, everything else $O(n)$
Sequences

Let’s see the operation complexity for sequences.

- mutable linked lists – $O(1)$ prepend and append, $O(n)$ insertion
- functional (cons) lists – $O(1)$ prepend operations, everything else $O(n)$
- array lists – amortized $O(1)$ append, $O(1)$ random accesss, otherwise $O(n)$
Sequences

Let’s see the operation complexity for sequences.

- mutable linked lists – $O(1)$ prepend and append, $O(n)$ insertion
- functional (cons) lists – $O(1)$ prepend operations, everything else $O(n)$
- array lists – amortized $O(1)$ append, $O(1)$ random access, otherwise $O(n)$

Mutable linked list can have $O(1)$ concatenation, but for most sequences, concatenation is $O(n)$.
Two-Phase Construction

Most data structures can be constructed in parallel with \textit{two-phase construction}, which uses an intermediate data structure.
Two-Phase Construction

Most data structures can be constructed in parallel with *two-phase construction*, which uses an intermediate data structure.

The *intermediate data structure* is a data structure that:

- has efficient combine method – $O(P \cdot \log n)$ or better
Two-Phase Construction

Most data structures can be constructed in parallel with *two-phase construction*, which uses an intermediate data structure.

The *intermediate data structure* is a data structure that:

- has efficient combine method – $O(P \cdot \log n)$ or better
- has efficient $+=\text{ method}$
Two-Phase Construction

Most data structures can be constructed in parallel with *two-phase construction*, which uses an intermediate data structure.

The *intermediate data structure* is a data structure that:

- has efficient combine method – $O(P \cdot \log n)$ or better
- has efficient $+=$ method
- the result method is allowed to be $O(n)$, but can be parallelized
Let’s implement a combiner for arrays.

Two arrays cannot be efficiently concatenated, so we will do a *two-phase construction.*
Example: Array Combiner

Let's implement a combiner for arrays.

Two arrays cannot be efficiently concatenated, so we will do a *two-phase construction*.

```scala
class ArrayCombiner[T <: AnyRef: ClassTag](val parallelism: Int) {
  private var numElems = 0
  private val buffers = new ArrayBuffer[ArrayBuffer[T]]
  buffers += new ArrayBuffer[T]
```
First, we implement the \(+=\) method:

```python
def +=(elem: T) = {
    buffers.last += elem
    numElems += 1
    this
}
```
Example: Array Combiner

First, we implement the += method:

```python
def +=(elem: T) = {
    buffers.last += elem
    numElems += 1
    this
}
```

Amortized $O(1)$, low constant factors – as efficient as an array buffer.
Next, we implement the combine method:

```python
def combine(that: ArrayCombiner[T]) = {
    buffers += that.buffers
    numElems += that.numElems
    this
}
```
Next, we implement the combine method:

```python
def combine(that: ArrayCombiner[T]) = {
    buffers += that.buffers
    numElems += that.numElems
    this
}
```

$O(P)$, assuming that buffers contains no more than $O(P)$ nested array buffers.
Finally, we implement the result method:

```scala
def result: Array[T] = {
  val step = math.max(1, numElems / parallelism)
  val array = new Array[T](numElems)
  val starts = (0 until numElems by step) ++ numElems
  val chunks = starts.zip(starts.tail)
  val tasks = for ((from, end) <- chunks) yield task {
    copyTo(array, from, end)
  }
  tasks.foreach(_.join())
  array
}
```
Demo – we will test the performance of the aggregate method:

xs.par.aggregate(newCombiner)(_ += _, _ combine _).result