
Functions and State



Functions and State

Until now, our programs have been side-effect free.
Therefore, the concept of time wasn’t important.
For all programs that terminate, any sequence of actions would have
given the same results.
This was also reflected in the substitution model of computation.
Rewriting can be done anywhere in a term, and all rewritings which
terminate lead to the same solution.
This is an important result of the λ-calculus, the theory behind
functional programming.



Stateful Objects

One normally develops the world like a set of objects, some of which
have a state that changes over the course of time.
An object has a state if its behavior is influenced by its history.
Example: a bank account has a state, because the answer to the
question

“can I withdraw 100 CHF ?”

may vary over the course of the lifetime of the account.



Implementation of State

Every form of mutable state is constructed from variables.
A variable definition is written like a value definition, but with the
keyword var in place of val:

var x: String = ”abc”

var count = 111

Just like a value definition, a variable definition associates a value
with a name.
However, in the case of variable definitions, this association can be
changed later through an assignment, like in Java:

x = ”hi”

count = count + 1



State in Objects

Objects in the “real world” with state are represented by objects
that have some variable members.
Example: Here is a class modeling a bank account.

class BankAccount {

private var balance = 0

def deposit(amount: Int): Unit = {

if (amount > 0) balance = balance + amount

}

def withdraw(amount: Int): Int =

if (0 < amount && amount <= balance) {

balance = balance - amount

balance

} else throw new Error(”insufficient funds”)

}



State in Objects (2)

The class BankAccount defines a variable balance that contains the
current balance of the account.
The methods deposit and withdraw change the value of the balance

through assignments.
Note that balance is private in the BankAccount class, it therefore
cannot be accessed from outside the class.
To create bank accounts, we use the usual notation for object
creation:

val account = new BankAccount



Working with Mutable Objects

Here is a worksheet that manipulates bank accounts.

val account = new BankAccount // account: BankAccount = BankAccount‘1797795

account deposit 50 //

account withdraw 20 // res1: Int = 30

account withdraw 20 // res2: Int = 10

account withdraw 15 // java.lang.Error: insufficient funds

Applying the same operation to an account twice in a row produces
different results. Clearly, accounts are stateful objects.



Identity and Change

Assignment poses the new problem of deciding whether two
expressions are “the same”
When one excludes assignments and one writes:

val x = E; val y = E

where E is an arbitrary expression, then it is reasonable to assume
that x and y are the same. That is to say that we could have also
written:

val x = E; val y = x

(This property is usually called referential transparency)



Identity and Change (2)

But once we allow the assignment, the two formulations are
different. For example:

val x = new BankAccount

val y = new BankAccount

Q: Are x and y the same?



Operational Equivalence

To respond to the last question, we must specify what is meant by
“the same”.
The precise meaning of “being the same” is defined by the property
of operational equivalence.
In a somewhat informal way, this property is stated as follows.
Suppose we have two definitions x and y.
x and y are operationally equivalent if no possible test can
distinguish between them.



Testing for Operational Equivalence

To test if x and y are the same, we must

▶ Execute the definitions followed by an arbitrary sequence of
operations that involves x and y, observing the possible
outcomes.

▶ Then, execute the definitions with another sequence S’

obtained by renaming all occurrences of y by x in S

▶ If the results obtained by executing S’ are different, then the
expressions x and y are certainly different.

▶ On the other hand, if all possible pairs of sequences (S, S’)

produce the same result, then x and y are the same.



Counterexample for Operational Equivalence

Based on this definition, let’s see if the expressions

val x = new BankAccount

val y = new BankAccount

define the values x and y such that they are the same.
Let’s follow the definitions by a test sequence:

val x = new BankAccount

val y = new BankAccount

x deposit 30 // val res1: Int = 30

y withdraw 20 // java.lang.Error: insufficient funds



Counterexample for Operational Equivalence (2)

Now rename all occurrences of y with x in this sequence. We obtain:

val x = new BankAccount

val y = new BankAccount

x deposit 30 // val res1: Int = 30

y withdraw 20 // val res2: Int = 10

The final results are different. We conclude that x and y are not the
same.



Establishing Operational Equivalence

On the other hand, if we define

val x = new BankAccount

val y = x

then no sequence of operations can distinguish between x and y, so
x and y are the same in this case.



Assignment and Substitution Model

The preceding examples show that our model of computation by
substitution cannot be used.
Indeed, according to this model, one can always replace the name of
a value by the expression that defines it. For example, in

val x = new BankAccount

val y = x

the x in the definition of y could be replaced by new BankAccount

But we have seen that this change leads to a different program.
The substitution model ceases to be valid when we add the
assignment.
It is possible to adapt the model by introducing a store, but it
becomes considerably more complicated.



Loops

Proposition: Variables make it possible to model all imperative
programs.
But what about control statements like loops?
We can model them using functions.
Example: Here is a Scala program that uses a while loop:

def power (x: Double, exp: Int): Double = {

var r = 1.0

var i = exp

while (i > 0) { r = r * x; i = i - 1 }

r

}

In Scala, while is a keyword.
But how could we define while by using a function?



Definition of while

The instruction while can be defined as a function that takes two
arguments:

▶ a condition of type boolean, and
▶ a command, of type Unit

The condition and the command must be passed by name so that
they’re reevaluated in each iteration.
This brings us to the following definition of while.

def while(condition: => Boolean)(command: => Unit): Unit =

if (condition) {

command; while(condition)(command)

} else ()

Note that while is tail recursive, so it can operate with a constant
stack size.



Exercise

Write a function implementing repeat loop that is used as follows:

repeat {

command

} ( condition )

Is it also possible to obtain the following syntax?

repeat {

command

} until ( condition )



For-Loops

The classical for loop in Java cannot be modeled simply by a
higher-order function.
The reason is that in a Java program like

for (int i = 1; i < 3; i = i + 1) { System.out.print(i + ” ”); }

the arguments of for contain the declaration of the variable i,
which is visible in other arguments and in the body.
However, in Scala there is a kind of for loops similar to Java’s
extended for loop:

for (i <- 1 until 3) { System.out.print(i + ” ”) }

This displays 1 2.



Translation of For-Loops

For-loops translate similarly to for-expressions, but using the foreach

combinator instead of map and flatMap.
foreach is defined on collections with elements of type T as follows:

def foreach(f: T => Unit): Unit =

// apply ‘f‘ to each element of the collection

Example

for (i <- 1 until 3; j <- ”abc”) println(i+” ”+j)

translates to:

(1 until 3) foreach (i => ”abc” foreach (j => println(i+” ”+j)))



Advanced Example: Discrete Event Simulation

We now consider an example of how assignments and higher-order
functions can be combined in interesting ways.
We will construct a digital circuit simulator.
This example also shows how to build programs that do discrete
event simulation.



Digital Circuits

Let’s start with a small description language for digital circuits.
A digital circuit is composed of wires and of functional components.
Wires transport signals that are transformed by components.
We represent signals using booleans true and false.
The base components (gates) are:

▶ The Inverter, whose output is the inverse of its input.
▶ The AND Gate, whose output is the conjunction of its inputs.
▶ The OR Gate, whose output is the disjunction of its inputs.

Other components can be constructed by combining these base
components.
The components have a reaction time (or delay), i.e. their outputs
don’t change immediately after a change to their inputs.



Digital Circuit Diagrams

(see blackboard)



A Language for Digital Circuits

We describe the elements of a digital circuit using the following
Scala classes and functions.
To start with, the class Wire models wires.
Wires can be constructed as follows:

val a = new Wire; val b = new Wire; val c = new Wire

or, equivalently:

val a, b, c = new Wire

Then, there exist the following functions, which create base
components, as a side effect.

def inverter(input: Wire, output: Wire): Unit

def andGate(a1: Wire, a2: Wire, output: Wire): Unit

def orGate(o1: Wire, o2: Wire, output: Wire): Unit



Constructing Components

More complex components can be constructed from these.
For example, a half-adder can be defined as follows:

def halfAdder(a: Wire, b: Wire, s: Wire, c: Wire): Unit = {

val d = new Wire

val e = new Wire

orGate(a, b, d)

andGate(a, b, c)

inverter(c, e)

andGate(d, e, s)

}



More Components

This half-adder can in turn be used to define a full adder:

def fullAdder(a: Wire, b: Wire, cin: Wire, sum: Wire, cout: Wire): Unit = {

val s = new Wire

val c1 = new Wire

val c2 = new Wire

halfAdder(a, cin, s, c1)

halfAdder(b, s, sum, c2)

orGate(c1, c2, cout)

}



What’s Left To Do?

The class Wire and the functions inverter, andGate, and orGate

represent a small description language of digital circuits.
We now give the implementation of this class and its functions
which allow us to simulate circuits.
These implementations are based on a simple API for discrete event
simulation.



Actions

A discrete event simulator performs actions, specified by the user at
a given moment.
An action is a function that doesn’t take any parameters and which
returns Unit:

type Action = () => Unit

The time is simulated; it has nothing to with the actual time.



Simulation Trait

A concrete simulation happens inside an object that inherits from
the abstract class Simulation, which has the following signature:

trait Simulation {

def currentTime: Int = ???

def afterDelay(delay: Int)(block: => Unit): Unit = ???

def run(): Unit = ???

}

Here,
currentTime returns the current simulated time in the form of an
integer.
afterDelay registers an action to perform after a certain delay
(relative to the current time, currentTime).
run performs the simulation until there are no more actions waiting.



The Wire Class

A wire must support three basic operations:
getSignal: Boolean

Returns the current value of the signal transported by the wire.
setSignal(sig: Boolean): Unit

Modifies the value of the signal transported by the wire.
addAction(a: Action): Unit

Attaches the specified procedure to the actions of the wire. All
of the attached actions are executed at each change of the
transported signal.



Implemening Wires

Here is an implementation of the class Wire:

class Wire {

private var sigVal = false

private var actions: List[Action] = List()

def getSignal: Boolean = sigVal

def setSignal(s: Boolean): Unit =

if (s != sigVal) {

sigVal = s

actions foreach (_())

}

def addAction(a: Action): Unit = {

actions = a :: actions

a()

}

}



State of a Wire

The state of a wire is modeled by two private variables:
sigVal represents the current value of the signal.
actions represents the actions currently attached to the wire.



The Inverter

We implement the inverter by installing an action on its input wire.
This action produces the inverse of the input signal on the output
wire.
The change must be effective after a delay of InverterDelay units of
simulated time.
We thus obtain the following implementation:

def inverter(input: Wire, output: Wire): Unit = {

def invertAction(): Unit = {

val inputSig = input.getSignal

afterDelay(InverterDelay) { output setSignal !inputSig }

}

input addAction invertAction

}



The AND Gate

The AND gate is implemented in a similar way.
The action of an AND gate produces the conjunction of input
signals on the output wire.
This happens after a delay of AndGateDelay units of simulated time.
We thus obtain the following implementation:

def andGate(a1: Wire, a2: Wire, output: Wire): Unit = {

def andAction(): Unit = {

val a1Sig = a1.getSignal

val a2Sig = a2.getSignal

afterDelay(AndGateDelay) { output setSignal (a1Sig & a2Sig) }

}

a1 addAction andAction

a2 addAction andAction

}



Exercise

1. Write the implementation of the OR gate.
2. The OR gate can be defined in the same way by combining

inverters and AND gates. Define a function orGate in terms of
andGate and inverter. What is the delay of this component?



The Simulation Trait

All we have left to do now is to implement the Simulation trait.
The idea is to keep in every instance of the Simulation trait an
agenda of actions to perform.
The agenda is a list of pairs. Each pair is composed of an action
and the time when it must be produced.
The agenda list is sorted in such a way that the actions to be
performed first are in the beginning.

trait Simulation {

case class WorkItem(time: Int, action: Action)

private type Agenda = List[WorkItem]

private var agenda: Agenda = List()

}



Implementation of AfterDelay

There is also a private variable, curtime, that contains the current
simulation time:

private var curtime = 0

An application of the afterDelay(delay)(block) method inserts the
task

WorkItem(curtime + delay, () => block)

into the agenda list at the right position.



Implementing Run

An application of the run method removes successive elements from
the agenda, and performs the associated actions.
This process continues until the agenda is empty:

def run(): Unit = {

afterDelay(0) {

println(”*** simulation started, time = ”+currentTime+” ***”)

}

while (!agenda.isEmpty) next()

}



Exercise

The run method uses the next function, which removes the first
action in the agenda, executes it, and updates the current time.

1. Provide an implementation for next.
2. Provide an implementation for afterDelay.



Probes

Before launching the simulation, we still need a way to examine the
changes of the signals on the wires.
To this end, we define the function probe.

def probe(name: String, wire: Wire): Unit = {

def probeAction(): Unit {

println(name + ” ” + currentTime + ” value = ” + wire.getSignal)

}

wire addAction probeAction

}



Setting Up a Simulation

Here’s a sample simulation that you can do in the worksheet.
Define four wires and place some probes.

val input1, input2, sum, carry = new Wire

probe(”sum”, sum)

probe(”carry”, carry)

Next, define a half-adder using these wires:

halfAdder(input1, input2, sum, carry)



Launching the Simulation

Now give the value true to input1 and launch the simulation:

input1.setSignal(true)

run

To continue:

input2.setSignal(true)

run



Summary

State and assignments make our mental model of computation more
complicated.
In particular, we lose referential transparency.
On the other hand, the assignment allows us to formulate certain
programs in an elegant way.
Example: discrete event simulation.

▶ Here, a system is represented by a mutable list of actions.
▶ The effect of actions, when they’re called, change the state of

objects and can also install other actions to be executed in the
future.

As always, the choice between functional and imperative
programming must be made depending on the situation.


